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Abstract— Motivated by a desire to use compressed sensing
in Atomic Force Microscopy, we revisit the Proximate Time-
Optimal Servomechanism(PTOSω) regulator we developed pre-
viously [15] for the harmonic oscillator, giving a more detailed
description of its construction and show new experimental
results. Then, we extend that previous work to include set-
point tracking. We show that, in contrast to regulator control,
the time-optimal switching curve becomes asymmetric, and in
fact the problem can be recast as a regulator with asymmetric
actuator limits. We then develop a PTOSω approximation and
present simulation and experimental results.

I. INTRODUCTION

The traditional Atomic-Force-Microscope (AFM) imaging
method is to raster scan the sample with an atomically sharp
probe. Raster scanning is not only a very time consuming
process, it can also lead to damaging either the sample or
the AFM probe tip or both. Traditionally, efforts to increase
imaging speed have focused on increasing the raster scan
rate via advanced control algorithms [1], [2].

More recently, researchers have begun to investigate using
more efficient scan patterns since often the raster scan spends
significant time over uninteresting regions [3]. In a similar
vein, [4] suggested a method of AFM imaging whereby a
random sample of point-to-point measurements are taken.
The sample topology is then reconstructed using the theory of
compressed sensing [5]. Taking this random sample of point-
to-point measurements reduces the tip-sample interaction and
can improve the integrity of both the sample and AFM tip.

Minimizing the imaging time in this scheme requires that
the rest-to-rest maneuver times between point measurements
be minimized. AFM stages are typically actuated with piezo-
electric actuators. The linear dynamics of these actuators are
characterized by a series of resonances and anti-resonances
which lack of a rigid body mode [6]. This can also be seen in
the frequency response of the AFM stage considered in [1].
Hence, even the simplest model for such a stage will be
second-order with complex poles. This contrasts with many
other mechatronic systems like hard-disk drives which are
often reduced to the simplified model of G(s) = a/s2.

For a linear time-invariant system, Pontryagin’s Maximal
Principle leads to a time-optimal control that is bang-bang
[7]. Excellent resources for synthesizing these controls as
feedback laws can be found in [8]–[10]. Unfortunately,
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the bang-bang feedback control is impractical. In any real
control system, there will be process and measurement noise,
uncertainty in the system parameters and imperfect actuators
which will cause the control to chatter between its maximum
and minimum values.

A large body of work exists which develops methods to
combat this chattering problem. However, much it focuses
on rigid body systems. In [11], a robust control law for
a double integrator plant is developed using sliding mode
techniques. Other researchers have developed the Proximate
Time-Optimal Servomechanism (PTOS) for a double inte-
grator plant [12] and a triple integrator plant [13].

Reference [14] suggests pre-computing the time-optimal
trajectory which is then tracked with a stabilizing trajectory
tracking control law. At the end of this reference trajectory,
an end-game control law is implemented to eliminate any
final error. A downside to this method is it requires pre-
computation of individual trajectories for each initial condi-
tion and target state.

In [15], we developed a near time-optimal regulator
controller for a system with purely imaginary eigenvalues,
which we called the PTOSω. In contrast to the controllers
for rigid body plants, this control law is not immediately
extendable to set-point tracking. To implement set point
tracking for those systems, the switching curve, and hence
the PTOS “tube” is simply translated in the phase plane. As
we discuss in Section IV, for the simple oscillator system
performing reference tracking, not only does the switching
curve becomes asymmetric but our control law must be
modified to provide a constant input at steady state.

This paper is organized as follows. In Section II we
review our previous work with additional details of the
method for developing the PTOSω regulator in order to help
guide our development of the reference tracking PTOSω. We
follow this discussion with some experimental results of the
regulator in Section III. We show in Section IV that the
time-optimal solution for a holdable set-point is governed
by an asymmetric switching curve. We show this curve is
a translated copy of the regulator switching curve for a
system with asymmetric control limits, which in fact, is the
switching curve in the error coordinates. This observation
helps us to construct the reference tracking controller as
a feedback control law. Using this development, we then
extend the PTOSω controller of Section II to the case
of set-point tracking in Section V and give a discussion
of its stability in Section VI. In Section VI-A, we show
experimental results for this set-point tracking PTOSω and
provide concluding remarks with a short discussion of the



case with damping in Section VII.

II. OVERVIEW OF REGULATOR PTOSω

Suppose we have a second-order system with imaginary
eigenvalues, described in state space by

ẋ = Ax+Bu(t) (1)

A =

[
0 1
−ω2 0

]
, B =

[
0
bo

]
where the output y = x1 is the position and x2 is the velocity.
It will be useful to define c = b0

ω2 . The system is driven by
a bounded control,1

u ∈ [−1, +1]. (2)

In [15] we modified the time-optimal regulator controller into
a near time-optimal regulator, which we called the PTOSω
for which we proved stability given an initial state anywhere
in R2. For brevity, here we assume that the initial state is a
holdable equilibrium state since ultimately we are interested
in rest-to-rest movements. These holdable equilibria are
given by xeq = −A−1Bu, or, noting (2),

x2,eq = 0 (3)
x1,eq ∈ [−c, +c]. (4)

The time-optimal feedback control law is characterized by a
switching curve, which is comprised of an infinite sequence
of half ellipses. The first set of such ellipses gives the control
law as [8]–[10]

u = sgn(fto(x1)− x2) (5)

fto(x1) = −sgn(x1)ω
√

2c|x1| − x21, |x1| ≤ 2c (6)

sgn(ξ) =


−1, ξ < 0

0, ξ = 0

+1, ξ > 0.

(7)

A. Development of fp(x1)

Consider the controller given by,

up(t) = sat
[
k2(−x2 + fp(x1))

]
. (8)

It will be useful for the ensuing discussions to make use of
the following divisions of the state space:

T =
{
x : | − x2 + fp(x1)| ≤ 1

k2
, x1 ∈ [−2c, 2c]

}
(9)

B =
{
x : x ∈ T , x1 ∈ [−c, c]} (10)

L =
{
x : x ∈ B, x1 ∈ [−x`, x`]} (11)

U− =
{
x : x 6∈ T , x2 ≥ fp(x1) +

1

k2
} (12)

U+ =
{
x : x 6∈ T , x2 ≤ fp(x1) +

1

k2
} (13)

1It is quite unlikely that a particular system will saturate at ±1. This
convention is made only for convenience here and such systems can be
easily dealt with changing bo to b̄o = boM where M is the new saturation
limit.

where 0 < |x`| < c and U+ and U− are the regions of the
state space which result in a saturated control, while x ∈ T
results in an unsaturated control and L ⊂ B ⊂ T .

First, note that a saturator and a gain gives a finite slope
approximation to the the sgn(·) function. By making fp(x1)
approximate fto(x1) and making k2 large, then in (8) we
an approximation to (5). Furthermore, we can employ a
linear feedback controller near the origin (i.e. for x1 ∈ L)
by defining fp as the continuously differentiable (for x1 ∈
(−2c, 2c)) function, defined piecewise as

fp(x1) =

{
f`(x1), |x1| ≤ x`
fn`(x1), x` < |x1| < 2c

(14)

where we require that

f`(x`) = fn`(x`) (15)
f ′`(x`) = f ′n`(x`). (16)

By making f`(x1) a linear function of x1, then for x1 ∈ L,
(8) describes the familiar equation for linear state feedback
with the sat(·) function enforcing respect for the control
limits. Specifically, define the linear portion of fp as

f`(x1) := −
(k1
k2

)
x1, |x1| < x`. (17)

We construct the entire fp by connecting this linear f` to
vertical translations of fto so such that (15) and (16) are
satisfied. Taking the Taylor approximation of (6) about x`
yields

fto(x1) ≈ − 1

k2
− k1
k2
x1 (18)

where

k2 =

√
2cx` − x2`
ωcx`

and k1 =
c− x`
cx`

. (19)

This is shown as the black curve in Figure 1. Since the
switching curve must go through the origin, add the x2-
intercept, 1

k2
, to (18) to yield f`(x1), the blue-dashed curve

in Figure 1. We connect the parts of fto outside [−x`, x`] to
f` by shifting the right portion of fto up by 1

k2
and the left

portion down by 1
k2

. Together, this yields the concatenation
of the all the dashed curves in Figure 1. We thus obtain

f`(x1) = −k1
k2
x1 (20)

fn`(x1) = sgn(x1)

[
− ω

√
2c|x1| − x21 +

1

k2

]
. (21)

Note that if x` → 0 then k2 → ∞ and 1
k2
→ 0 and we

recover (5).
Theorem 1: The control law described by (8), (20) and

(21) leads to a stable closed loop system.
Proof: For the full proof, see our previous work in [15].

However, the features relevant to this paper are that, provided
we restrict |x`| < 0.4c: (i) states within region B remain in B
which we showed by examining the time derivative of u(t)
along the upper and lower boundaries of B; and (ii) states
in B tend asymptotically to the origin which we showed by
giving a Lyapunov function for region B.
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Fig. 1: Illustration of the development of fp(x1). The red
curve depicts fto(x1) and the solid black curve is the Taylor
approximation of fto(x1) about x`. We shift the solid black
curve up by 1

k2
, giving f`(x1) (dashed-blue). Then, from

[x`, 2c], we shift fto up by 1
k2

and from [−2c, x`] we shift
fto down by 1

k2
. This gives fptos as the concatenation of the

dashed curves.

Fig. 2: Schematic of the LRC circuit used to test the control
law.

III. EXPERIMENTAL RESULTS

We tested the control law (8) on the LRC circuit shown
in Figure 2 which is described by the transfer function

Vo(s)

Vin(s)
=

1/(LC)

s2 + R
L s+ 1

LC

. (22)

If we could construct this circuit with R = 0, we would
have exactly the plant the described in (1). Of course, this is
impossible but we can get close. We constructed this circuit
with a capacitor and inductor which have the nominal values
C = 0.235 µF and L = 100 mH. The inductor has an
internal resistance of R = 82 Ω. In trying to construct a
passive circuit with extremely high Q, note that choosing a
larger inductor tends to increases its internal resistance. Of
course, we could try to increase ω =

√
1/LC by choosing

smaller capacitance values and could thus theoretically get
arbitrarily low damping. However, since the control law is
implemented digitally on an FPGA, this approach is limited
by the achievable sample rate. The values chosen represent
a compromise between these competing concerns.

We performed a white noise system identification which

yielded

G(s) =
4.478e7

s2 + 743.5s+ 4.449e7
. (23)

Thus, ζ = 0.063, ω = 6669.7 rad/s, bo = 4.478e07. We pro-
grammed the control law in (8) into a National Instruments
Compact RIO (NI cRIO-9082) FPGA, using a sample rate
of 100 kHz. Because our control law utilizes both states of
the system, we implemented a digital prediction observer on
the FPGA to provide an estimate of x2. Since the control
law was developed in continuous time, but implemented in
discrete time, it is important to ensure that the discrete states
of the observer correlate to the continuous time states for fast
enough sample rates.

Because the control law utilizes non-linear feedback, ana-
lyzing the convergence of the observer and plant becomes
problematic. Namely, the separation principle no longer
holds. Proceeding anyways, we chose an observer gain L =
[0.440 4663.6]T which, in the linear case, would place the
observer poles at four times the natural frequency of the plant
and increase the damping ratio to ζ = 0.95.

We induced an initial condition by issuing a step command
of Vin = 1 volt to the system. After a settling period, we
turned on the PTOSω controller. For this experiment we set
x` = 0.1c. The results of this experiment are displayed in
Figures 3 and 4 where it can be seen that even for a plant with
small but non-zero damping, our control law performs well,
with both the simulation and experiment agreeing nicely.

IV. REFERENCE TRACKING TIME-OPTIMAL FEEDBACK
CONTROLLER

Suppose that rather than time-optimal regulation, we
would like our plant to track set-point changes as fast as
possible. For plants with imaginary eigenvalues, this new
requirement changes the structure of the switching curve,
giving it an asymmetry. This is in sharp contrast to rigid
body plants where the switching curve is simply shifted in
the phase plane. This difference makes set-point tracking in
both the time-optimal and PTOSω case more difficult than
it is for rigid body plants since the switching curve becomes
asymmetric and changes for every new set-point.

To show how this difference comes about, we review
the standard derivation of the switching curve [8]–[10]. We
minimize the cost

J =

∫ tf

0

1dτ (24)

which gives the Hamiltonian

H = 1 + pT (Ax+Bu) (25)

where ṗ = AT p defines the adjoint dynamics. Given the
boundedness of u(t), the minima of H are given by

u = −sgn(pTB) = −sgn(p2(t)bo). (26)

Thus, the control switches at times ts when the costate p2(t)
vanishes. For the first and last switch, this time is unknown
since these roots depend on the boundary conditions for p(t)
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Fig. 4: Phase-plane trajectories of simulated and experi-
mental system.

which are unknown.2 However we make the observation that,
since the costate rotates in its phase plane at a rate of ω, no
switch can last longer than π/ω units of time. Thus, we
can locate the final leg of any time-optimal trajectory by
integrating the system in (1) backwards for π/ω units of
time with u = ±1. This is the curve labeled fto in Figure 1
if x(tf ) = 0. Since the control is bang-bang, trajectories
approaching this curve must be under the control u = ∓1,
and thus the control switches upon the state reaching the
curve, prompting us to call it the the switching curve.
Repeating the process of backwards integration starting from
the first segment of fto locates the next segment of the
switching curve. However, since the first segments are half
ellipses with length 2c, we need only concentrate on these
first segments since we are interested in holdable equilibria,
x1eq ∈ [−c c].

The typical derivation of the switching curve performs this
process beginning at the origin [8]–[10], [16], which yields
the regulator of (5). To derive the curve for target states
other than the origin, we must integrate backwards starting
at the desired reference, xr. However, to formulate this as a
feedback control law, it is more instructive to examine the
system in the error coordinates, xe = x−xr. First, note that
when xe = 0, we must apply the constant control

uss(t) =
x1r
c
, ∀t ≥ tf (27)

if we are to hold the state at xr. The error dynamics are

2The difficulty of solving the two-point boundary value problem defined

by
[
ẋ
ṗ

]
=

[
Ax + B(−sgn(p2bo))

AT p

]
arises because (greedily!) x(t) has

taken all four boundary conditions and there are none left for p(t).

described by

ẋe = Axe +Axr +Bu (28)

= Axe +

[
0
bo

](
u− 1

c
x1r

)
. (29)

Thus, driving the system to x(t > tf ) = xr is equivalent to
driving the error state xe to the origin if the error dynamics
are driven by an asymmetric control ū(t), namely

ūmin = −1− 1

c
x1r (30)

ūmax = 1− 1

c
x1r. (31)

It will be convenient to refer to (30) and (31) together as
ūmin
max

. We can construct the time-optimal switching curve
for the error coordinates by solving (29) backwards in time
from the origin of the error phase plane by integrating

x(0) = ūmin
max

∫ 0

T

Φ(0, τ)Bdτ (32)

(33)

which yields[
x1
x2

]
=

ūmin
max

c(1− cosω(−T ))

ūmin
max

bo
ω sinω(−T ),

 (34)

for T ≤ π/ω. By eliminating time, we can solve for x2 as
a function of x1e which is fto,e,

f−to,e = −sgn(x1e)ω
√

2x1ecūmin − x21e, x1e < 0 (35)

f+to,e = −sgn(x1e)ω
√

2x1ecūmax − x21e, x1e ≥ 0. (36)



x1e (error corrdinates)
-1 0 1 2 3

x
2

-10000

-5000

0

5000
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Fig. 6: Block diagram of time-optimal reference tracking
controller.

We use the convention that the superscript “−” denotes
quantities of the left-half phase plane switching curve and
“+” for the right half phase plane switching curve through the
rest of this paper. This switching curve is plotted in Figure 5.
It is worth pointing out that the same result, less a translation
of x1r, will be obtained by generating the switching curve in
the un-shifted coordinates by integrating (1) backwards from
xr.

Note that the ellipse in the negative half-plane is located
at center and semi-major axis length of cūmin while the
ellipse in the positive half-plane has center and semi-major
axis length of cūmax so that each ellipse has a different size
and a different center. We see then that for reference tracking,
the switching curve loses the symmetry of the regulator case.

Though the input to the error dynamics is
ū ∈ [ūmin, ūmax], the input to the actual plant is
still u ∈ [−1, +1], which we obtain by adding back the
required steady-state feedforward input, uss = x1r

c . This
development can be implemented as a feedback control law
as

u =

{
sgna[fto(x1e)− x2] + x1r

c , |x1| ≤ 2c

sgna(−x2) + x1r

c , otherwise
(37)

where we define the asymmetric signum is

sgna(ξ) =


umax, ξ > 1

0, |ξ| ≤ 1

umin, ξ < −1.

(38)

This control law is illustrated in the block diagram shown
in Figure 6. This scheme has the desirable feature that
it applies the necessary constant control to hold the state
at x(t) = xr, ∀ t ≥ tf . Note that for the states with
|x1(0)| > 2c, the control is not time-optimal. However, since
the goal of our control system is to move between steady-
state equilibrium points, it is reasonable always to expect that
|x1| < 2c since ±c is the largest magnitude of a holdable
point. The approximation implemented in (37) was suggested
in [10] and accounts for the unlikely event this is no longer
true.

V. REFERENCE TRACKING PTOSω

In a similar vein to the regulator PTOSω, we have de-
veloped a PTOS-like controller for the reference tracking
situation. Examining Figure 5, the first challenge immedi-
ately presents itself. If we are to maintain the continuous
differentiability of the PTOS function, which we now call
fp,ref (x1e), we cannot have x−` = x+` since at a single
x` the curves f+to,e and f+to,e have different slopes, i.e.,
f ′−to,e(x`) 6= f ′+to,e(x`). Rather, we need to enforce

M =
k−1
k−2

=
k+1
k+2

. (39)

Because the curves are geometrically similar, choosing x−`
and x+` as a fraction of the distance to the center of each
ellipse gives us what we need, i.e., for 0 < λ ≤ 1, choose

x+` = λcūmax (40)

x−` = λc|ūmin|. (41)

We can easily calculate k±1 and k±2 from (19) by replacing
c with c̄ = c|ūmin

max
| and x` with x±` in (41). Thus, we define

fp,ref as

fp,ref =
ω
√

2cūminx1e − x21e − 1
k−
2

, −2c < x1e ≤ −x−`
−Mx1, −x−` < x1e < x+`

−
[
ω
√

2cūmaxx1e − x21e − 1
k+
2

]
, x+` ≤ x1e < 2c.

The next challenge is in defining the saturation boundaries.
In particular, recall that previously, the saturation boundaries
were defined by fp shifted up and down by a factor of
1/k2 but now we have two different k2’s. It turns out that a
reasonable choice is to choose

k2 = max
{
k−2 , k

+
2

}
(42)

and then define the PTOSω reference tracking control as

ūp,ref = sata {k2[fp,ref − x2]} (43)

where the asymmetric saturator is given by

sata(ξ) =


ūmax, ξ > ūmax

ξ, ūmin ≤ ξ ≤ ūmax

ūmin, ξ < ūmin.

(44)
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Fig. 8: Block diagram of the PTOSω reference tracking
controller.

This gives the saturation boundaries as

xupper2 =fp,ref (x1)− ūmin

k2
(45)

xlower
2 =fp,ref (x1)− ūmax

k2
(46)

which is shown in Figure 7. Just as in the time-optimal case,
for use in the regular coordinates, we add back the required
steady-state feedforward control which yields

up,ref = sata {k2[fp,ref − x2]}+
x1r
c
. (47)

This control law can be implemented according to the block
diagram of Figure 8.

VI. STABILITY OF THE REFERENCE TRACKING PTOS

A generalized stability analysis has yet to be done. How-
ever, if we consider the plant in (23), it is straightforward
to show using the techniques we described in [15] that for
a particular choice of x1r and λ (i.e., x`), we have a stable
closed-loop system. For the simulations in the next section,
we will use x1r = −0.5c and λ = 0.1. To see that xe ∈ B
does not exit via the saturation boundaries, we consider the
time derivative of up,ref (t) along the boundaries of B which
is

u̇p,ref = f ′p,ref (x1e)ūmin
max

+ k2f
′
p,ref (x1e)fp,ref (x1e)

+ k2ω
2x1e − k2boūmin

max
(48)

where u̇p,ref > 0 along the upper boundary and u̇p,ref < 0
along the lower boundary implies that the state does not exit.
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ℓ x+
ℓ

Umin

Umax

x1r = −0.5c

B

B

T

T

u̇
(t
)

fptos
f
upper
ptos

u̇ lower (< 0)

f lower
ptos

u̇ upper (> 0)

Fig. 9: This figure shows u̇ evaluated along the upper and
lower saturation boundaries, for x1r = −0.4c and λ =
0.1. Since for the state to remain trapped in B, we need
u̇p,ref < 0 along the lower boundary and u̇p,ref > 0 along
the upper boundary, this plot shows B is invariant.

Using these parameters and a forward difference approx-
imation to calculate f ′p,ref , we can plot (48) evaluated
along both the upper and lower boundaries. This is shown
in Figure 9. Indeed, we see that u̇p,ref evaluated at the
upper boundary becomes negative at cūmin. Similarly, u̇p,ref
evaluated along the lower boundary becomes positive at
cūmax which indicates that a state xe ∈ B remains in B.
To see that xe ∈ B tends asymptotically to the origin (of

the error space), we use the Lyapunov function

V (xe) :=
1

2
x22 +

∫ x1e

0

p(s)ds (49)

p(x1) := ω2x1e − bok2fp,ref (x1e). (50)

This is nearly the same Lyapunov function we used in [15]
aside from a sign difference that accounts for the definition of
fp,ref differing by a negative sign. The positive definiteness
of V (x) and negative definiteness of V̇ (x) follow from the
arguments given in that work with the following modifica-
tion. Rather than appealing to the symmetry of fp,ref , (which
is now lacking), we note from Figure 7 that

fp,ref <0, 0 < x1e < cūmax (51)
fp,ref >0, cūmin > x1e > 0. (52)

(53)

Thus, the integral,
∫ x1e

0
fp,ref (s)ds always yields a negative

area so that (49) is still positive definite.

A. Reference tracking PTOSω results

Using the same experimental setup as discussed in Sec-
tion III, we tested the reference tracking PTOSω controller.
The time histories of these results are shown in Figure 10
along with the simulated time-optimal trajectories for com-
parison. Figure 11 shows the phase-plane plots for the



0 0.2 0.4 0.6 0.8 1
x
1

-1

0

1

x1r = −0.50c, λ = 0.10

x1 (experiment, PTOSω)

x1 (simulation, PTOSω)

x1 (simulation, time optimal)

0 0.2 0.4 0.6 0.8 1

x
2
,
x̂
2

-10000

-5000

0

5000

x̂2 (experiment, PTOSω)
x2 (simulation, PTOSω)
x2 (simulation, time optimal)

t [ms]

0 0.2 0.4 0.6 0.8 1

u
(t
)

-1

0

1
u (experiment, PTOSω)

u (simulation, PTOSω)

u (simulation, time optimal)

Fig. 10: Comparison between simulation and experi-
mental results for the reference tracking PTOSω. The
initial condition is set to x1 = 1 and the reference is
x1r = −0.5c. The controller from both simulation and
experiments is driven by the states from a digital observer.
Note that in the time series plot of x2, we have plotted
the estimate, x̂2, for the experimental case since this is
the only data available.
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Fig. 11: Phase-plane trajectories in the error coordinates
of both the simulated and experimental systems.

simulated and experimental systems. As predicted above, the
states do indeed remain trapped in B.

VII. CONCLUSIONS AND REMARKS ON DAMPING

In this paper, we have given a detailed derivation of the
PTOSω which we then extend to include reference tracking.
We also verified these controllers in both simulation and
physical experiment on an LRC circuit. While we have
argued the stability of the reference tracking PTOSω con-
troller based upon our previous stability proof of the PTOSω
regulator, a rigorous stability proof for the tracking controller
is still an area of future work.

To properly include damping will be significantly more
challenging. The switching curve in that case is described by
a logarithmic spiral. Though it is still possible to eliminate
time from the equations as we did with (34), it is not
possible to isolate x1 or x2 on one side. Nonetheless, the
switching curve is easily generated via backwards integration
and can then be represented in a lookup-table. The techniques
discussed in Sections II-A and V can be used to create a
“numeric” PTOSω controller, e.g., by numerically calculat-
ing the derivatives of fto to generate k±1 and k±2 . Challenges
still exist, however, since fto is represented in a lookup-table
and fto changes for every reference input. For our use-case,
of visiting a pre-determined set of points for a compressed
sensing scheme, it is also possible to generate a family of
switching curves offline and then program the controller to
download the next needed curve while the current set point
is being tracked.
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