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Abstract— We develop a Proximate Time-Optimal Ser-
vomechanism (PTOS) for a harmonic oscillator plant with no
damping. We approximate the signum function inherent to the
bang-bang, time-optimal solution with a gain and saturator. We
prove that if certain design restrictions are met, this control law
will drive any initial state into an invariant region B about the
origin of the phase-plane in finite-time. We then show that once
the state enters this region, it is asymptotically stable about the
origin, by demonstrating that a Lyapunov function exists for
the region B. Finally, we present simulation results using this
control law on a simplified model of an atomic force microscope.

I. INTRODUCTION

The traditional Atomic-Force-Microscope (AFM) imaging
method is to raster scan the sample with an atomically sharp
probe. Raster scanning is not only a very time consuming
process, it can also lead to damaging either the sample or
the AFM probe tip or both. Traditionally, efforts to increase
imaging speed have focused on increasing the raster scan
rate via advanced control algorithms [1], [2].

Recently, a novel approach to AFM imaging has been
suggested [3] whereby a random sample of point-to-point
measurements are taken. The sample topology is then recon-
structed using the theory of compressed sensing [4]. Taking
this random sample of point-to-point measurements reduces
the tip-sample interaction and can improve the integrity of
both the sample and AFM tip.

In order to minimize the imaging time, the rest-to-rest ma-
neuver times from one point measurement to the next must
be minimized. While the vertical z-direction dynamics of
some AFMs can be approximated by a first-order model, the
dynamics in the x and y-directions can typically be reduced
only to an oscillatory second-order model as discussed in
[3] and which can also be seen in the frequency response
function of the AFM stage considered in [1]. Although the
time-optimal control of first-order systems is well understood
[5], the time-optimal control of oscillatory second-order
systems is less well characterized and is still an area of
research [6].

For a linear time-invariant system, Pontryagin’s Maximal
Principle leads to a time-optimal control that is bang-bang
[5]. Excellent resources for synthesizing these controls as
feedback control laws can be found in [7]–[9]. Unfortunately,

This work was supported in part by the US National Science Foundation
(NSF Grant CMMI-1234980), a University of Colorado Engineering Dean’s
Graduate Assistantship, and Agilent Technologies, Inc.

R.A. Braker is a graduate student and L.Y. Pao is the Richard & Joy
Dorf Professor; both are with the Dept. of Electrical, Computer, and
Energy Engineering at the University of Colorado, Boulder, CO 80309,
roger.braker@colorado.edu, pao@colorado.edu.

the bang-bang feedback control is impractical. In any real
control system, there will be process and measurement
noise, uncertainty in the system parameters and imperfect
actuators which will cause the control to chatter between its
maximum and minimum value. Researchers have proposed
several methods to combat this undesirable behavior for other
systems. In [10], a robust control law for a double integrator
plant is developed using sliding mode techniques. Other
researchers have developed the Proximate Time-Optimal
Servomechanism (PTOS) for a double integrator plant [11]
and a triple integrator plant [12].

Reference [13] suggests pre-computing the time-optimal
trajectory which is then tracked with a stabilizing trajectory
tracking control law. At the end of this reference trajectory,
an end-game control law is implemented to eliminate any
final error. A downside to this method is it requires pre-
computation of individual trajectories for each initial condi-
tion and target state.

In this paper, we take inspiration from the PTOS con-
trollers developed in [11] and [12] to develop a similar
controller, PTOSω, for second-order systems with purely
complex eigenvalues for the regulator case. We note that this
controller has limited direct practical value since we have
ignored damping and our controller only drives the system
to the origin. Nonetheless, since the structure of this problem
differs significantly from the existing PTOS controllers, this
work represents a first step towards developing a fully usable
PTOS for systems with complex poles. Section II summa-
rizes the time-optimal solution and its associated chattering
problems. In Section III, we develop the PTOSω controller.
We show in Sections IV through VII that this controller leads
to a stable, closed-system. Finally, we present simulation
results and conclusions in Sections VIII and IX.

II. PROBLEM FORMULATION

Here, we review the time-optimal regulator problem for
the simple harmonic oscillator with mass m = 1

bo
, spring

constant 1
c = ω2

bo
, and no damping such that the system can

be described in state space by[
ẋ1
ẋ2

]
=

[
0 1
−ω2 0

] [
x1
x2

]
+Bu (1)

where B =
[
0 bo

]T
. The position is x1 and the velocity is

x2. The input is bounded, u(t) ∈ [−1,+1].
Problem: Given any initial state x(0) = xo, transfer the

system to the origin in minimal time.
The time-optimal solution can be derived from Pontrya-

gin’s Maximal Principle and it can be written as a feedback



Fig. 1: Block diagram of time-optimal controller.
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Fig. 2: The time-optimal switching curve (solid red) fto
divides R2 into U+and U−. Trajectory CE shows the state
evolve with zero input. Compare this to the time-optimal
trajectory CD, where the control has decreased the magnitude
of x1 by 2c. The number of control switches from an initial
state A to the PTOSω region is calculated by determining
from (21) the first intercept with the x1-axis, point F.

control law as [7]–[9]

uto (x̄1, x2)) = sgn
(
− x2 − fto(x̄1)

)
(2)

fto(x̄1) = sgn(x̄1)ω
√
c2 − x̄21 (3)

where the sgn(·) is defined as

sgn(ξ) =

 +1, ξ > 0
0, ξ = 0
−1, ξ < 0

and where x̄1 is given by

x̄1 =

{
sgn(x1)

[
c− frac

(
|x1|
c

)
c
]
, b |x1|

c c mod 2 = 0

frac(x1

c )c, otherwise
(4)

where frac(·) yields the fractional remainder of its argument
and b(·)c is the standard floor function. Noting the time
dependence of x1 and x2, we will often simply write uto(t).
Figure 1 shows a block diagram of the control scheme. We
call fto(x̄1) the switching curve. Consisting of semi-ellipses,
it divides the state space into two regions, U+ and U−, as
shown by the red curve in Figure 2. The control is u = −1
when x2 is above the switching curve, and u = +1 when x2
is below the switching curve.

Although the control is optimal, it is impractical to im-
plement on a real system. It is well known that a bang-
bang feedback control leads to chatter in the presence of
disturbances and model uncertainty and sensor noise [14].
This control law is no different. At the last switch, the state
will ideally follow the switching curve to the origin, as in the
blue trajectory in Figure 2. However, in practice, the control
will chatter between −1 and +1 after this last switch.

III. PRACTICAL NEAR TIME-OPTIMAL CONTROLLER

The chatter problem of time-optimal control laws for a
few other systems has been addressed by approximating the
sgn(·) function with a saturator and a gain [11], [12]. We
take a similar approach here in deriving the PTOSω for the
system defined in (1). The saturator is defined as

sat(ξ) =


+1, ξ > 1

ξ, |ξ| ≤ 1

−1, ξ < −1.

(5)

Since the time-optimal trajectory only attempts to follow the
switching curve after the final switch, we only modify (2)
and (3) when |x1| ≤ 2c. In this region, we consider the
controller given by

up(t) = sat
[
k2(−x2 − fp(x1))

]
(6)

where fp(x1) is defined later in (13).
In the rest of the paper, we will use the following divisions

of the state space:

T =
{
x : |x2 + fp(x1)| ≤ 1

k2
, x1 ∈ [−2c, 2c]

}
(7)

B =
{
x : x ∈ T , x1 ∈ [−c, c]} (8)

L =
{
x : x ∈ B, x1 ∈ [−x`, x`]} (9)

U− =
{
x : x 6∈ T , x2 > −fp(x1)} (10)

U+ =
{
x : x 6∈ T , x2 ≤ −fp(x1)}. (11)

Similar to their definition in the time-optimal case, U−
and U+ are the regions of R2 that result in a saturated
control while x ∈ T ⊂ R2 results in an unsaturated
control. Furthermore, note that B ⊂ T and L ⊂ B while
U+ ∪ T ∪ U− = R2.

A. Development of fp(x1)

In this section, we focus our attention on the region in the
state space where |x1| ≤ 2c. Here, fto(x̄1) is equivalent to

f(x1) = sgn(x1)ω
√

2αc|x1| − αx21 (12)

if α = 1. In general, 0 < α ≤ 1 is a discount factor that
ensures there is sufficient control authority left to account
for modeling errors. We can combine a linear controller
near the origin with a faster, more aggressive controller that
approximates fto “far” from the origin by defining fp as the
piecewise continuous function

fp(x1) =

 f`(x1) |x1| ≤ x`
fn`(x1) x` < |x1| < 2c
fto(x̄1) otherwise,

(13)



where

f`(x1) =
k1
k2
x1 (14)

fn`(x1) = sgn(x1)

[
ω
√

2αc|x1| − αx21 −
1

k2

]
. (15)

Note that f` connects the two disjoint portions of fn`.
Requiring that these two curves be joined continuously with
equal slope at |x1| = x` yields the following k1 and k2

k2 =

√
2αcx` − αx2`
αωcx`

and k1 =
c− x`
cx`

. (16)

Then, for all of R2 the control law is

up(t) =

{
sat
[
− k2x2 − k2fp(x1)

]
, x1 ∈ (−2c, 2c)

sgn
[
− x2 − fp(x1)

]
, x1 /∈ (−2c, 2c).

(17)
For all x outside the region T , the control is equivalent to
the time-optimal control in (2). If x` → 0 then k2 →∞ and
1
k2
→ 0 and we recover (2). This control scheme allows us

to choose x` and α though we note that, e.g., choosing k1
determines k2 for a given α. We restrict x` ∈ [0, 25c) (see
Lemma A-2 in the Appendix and Theorem 2 in Section V).

In the following sections, we prove that the control law
in (17) leads to a stable closed-loop system. In Section IV,
we show that all trajectories will reach T in finite time. We
show in Section V that only the region B is invariant and
in fact the state will exit T \B. For this case, we show in
Section VI that the state will still enter B in finite time. In
Section VII, we show that all states in B tend asymptotically
to the origin by giving a Lyapunov function for x ∈ B.

IV. ALL TRAJECTORIES REACH T IN FINITE TIME

For an initial condition xo, equation (1) is solved by

x = Φ(t− to)xo +

∫ t

0

Φ(t− τ)Bu(τ)dτ (18)

where the state transition matrix Φ(t− τ) is given by

Φ(t− τ) =

[
cos(ω(t− τ)) sin(ω(t−τ))

ω
−ω sin(ω(t− τ)) cos(ω(t− τ))

]
. (19)

Noting that the state rotates clockwise at a rate of ω in
the phase space, it is trivial to show that given any initial
condition in U+ or U−, the state reaches the switching curve
fto in ts ≤ π

ω and the time between subsequent switches is
half a period or π

ω . A useful property of trajectories subject
to fto is that between every switch, the distance of |x1| to
the origin decreases by 2c which is illustrated in Figure 2
with trajectories CD and CE [7].

Theorem 1: All trajectories reach T in finite time.
Proof: Begin by solving (18) for the time it takes the

state to cross the x1-axis from any xo = [xo1 x
o
2]T , e.g., AF

in Figure 2. We consider the case where xo is in the U−
region. Solving (18) for x2 = 0 at t = t1 gives

0 = −ωxo1 sin(ωt1) + xo2 cos(ωt1)− bo
ω

sin(ωt1). (20)

Fig. 3: The entire PTOSω region T includes both shaded
regions, while B is only the darker shaded region and T \B
is the lighter shaded region.

Solving (20) for t1, and using t1 in row one of (18), we find
that

x1(t1) =

√(
xo2
ω

)2

+ (xo1 + c)2 − c. (21)

Since the state rotates clockwise, the first switch will occur
on the semi-ellipse of the switching curve directly below
x1(t1). Since at each subsequent switch, the magnitude of
x1 decreases by 2c, an upper bound on the time tT to reach
T is

tT ≤
[⌊(x1(t1)

2c

)⌋
+ 1

]
π

ω
<∞, ∀x1(t1) <∞. (22)

V. THE REGION B IS INVARIANT

In this section, we show that once the state enters the
region B, it will remain in B. Consider Figure 3. For x1 > 0,
the segments AB and DE represent the upper and lower
saturation boundaries of the linear region L, respectively.
Similarly, the segments BC and EG represent the upper and
lower saturation boundaries of the rest of T . For the state
to remain trapped in T requires that sgn(u̇) = −sgn(u)
along the upper boundary AC and the lower boundary DG
in Figure 3. We will show that this requirement is satisfied
for the whole segment AC and along DF but not FG. Hence,
T \B is not invariant and a state may move freely through
the segment FG. For x ∈ T , the time derivative of u(t) is

u̇(t) = f ′p(x1)u+ k2f
′
p(x1)fp(x1) + k2ω

2x1 − k2bou.

Denote u(t) at the upper boundary AC as uu(t) = −1, and
at the lower boundary DG as u`(t) = +1. The requirement
that sgn(u̇) = −sgn(u) can be expressed as

u̇` = f ′p(x1) + k2f
′
p(x1)fp(x1) + k2ω

2x1 − k2bo < 0
(23)

u̇u = −f ′p(x1) + k2f
′
p(x1)fp(x1) + k2ω

2x1 + k2bo > 0.
(24)



We will consider when x1 ≥ 0. By anti-symmetry, similar
results hold for x1 ≤ 0. For x1 ≥ 0, we have

f ′p(x1) =

{ k1
k2

0 ≤ x1 ≤ x`
ωα(c−x1)√
2αcx1−αx2

1

x` < x1 ≤ 2c.
(25)

Lemma 1: The inequalities (23) and (24) hold in the linear
region (on the segments AB and DE).

Proof: Consider first the upper boundary, segment AB,
where, using (14) and (25), the inequality in (24) can be
written as

k1
k2

< k2

(k1
k2

)2
x1 + k2ω

2x1 + k2bo.

We can make the RHS as small as possible by inserting the
smallest possible x1, i.e., x1 = 0:

k1
k2

< bok2. (26)

Now using k1 and k2 from (16), we see that

k1
k22

=
(c− x`

cx`

) ω2α2c2x2`
2cαx` − αx2`

< bo. (27)

Letting α = 1 to maximize the LHS, this simplifies to

c < 2c,

which is clearly always true.
Now consider segment DE, the lower boundary in the

linear region, where (23), again for the case x1 > 0, can
be written as (k1

k2

)2
x1 +

k1
k22

+ ω2x1 < bo.

Now, insert k1 and k2 from (16) and maximize the LHS by
letting x1 = x`:

(c− x`)2ω2α2c2x2`
c2x2`(2cαx` − αx2`)

x` +
(c− x`)ω2α2c2x2`
cx`(2cαx` − αx2`)

+ ω2x` < bo

x` < c

which holds by the requirement that x` < 2
5c.

Lemma 2: Consider the lower boundary in the nonlinear
region. Inequality (23) is satisfied for x` < x1 < c, i.e., for
the segment EF, but not for x1 ≥ c, i.e., segment FG.

Proof: Using (15) and (25), it is easy to show that (23)
reduces to

c > x1.

Lemma 3: The entire upper boundary AC satisfies (24).
Proof: Since segment AB was already considered in

Lemma 1, here we consider only BC. Inserting (15) and
(25) into (24) yields

0 <
−2ωα(c− x1)√

2αcx1 − αx21
+ k2ω

2αc+ k2ω
2x1(1− α) + k2bo.

(28)

By inspection, the last three terms are positive. However, it
is unclear under what condition they will dominate first term
when x1 < c, particularly since k2 depends on our choice

of x`. However, Lemma A-1 in the Appendix states that the
RHS of (28) is monotonically increasing with x1. Hence, we
can use the smallest possible value of x1, that is x1 = x`,
to minimize the RHS of (28). Further substituting k2 from
(16), we find after simplification that

0 <− 2ω2α2c(c− x`) + (2αc− αx`)ω2α(c− x`)
+ (2αcx` − αx2`)ω2 + (2αc− αx`)bo.

Now, we make the linear region as small as possible, i.e., let
x` → 0 to yield

0 < 2αcbo. (29)

Thus, inequality (24) is satisfied over the entire segment AC.

Theorem 2: A state within B is trapped within B, i.e., B
is invariant.

Proof: By Lemmas 2 and 3, the state will not exit B
via either AH or DF. By requiring that x` < 2

5c, Lemma A-2
in the Appendix states that for any state on the segment HF,
x2 < 0. From (1), this implies that x1 is decreasing and the
state is moving toward the interior of B.

VI. ALL STATES ENTER B IN FINITE TIME

To show that the state will exit T \B and enter B in finite
time, we prove the following lemmas.

Lemma 4: The state exits T \B in finite time.
Proof: Assume an initial condition xo on segment HC,

i.e. , the upper saturation boundary between (c, 2c]. Now,
suppose u = +1 and call the resulting trajectory xu+(t)
which achieves a minimum at tm ≤ π

ω when ẋ2,u+ = 0.
Considering (1), this means

x1,u+(tm) = c.

Now, consider xp(tm), the trajectory from the same xo but
under the PTOSω control. We would like to show that at tm,
x1,u+(tm) ≥ x1,p(tm). Using the x1-component of (18), this
is equivalent to∫ tm

0

bo
ω

sin
(
ω(tm − τ)

)
(1− up(τ))dτ ≥ 0.

Since sin ξ ≥ 0, ξ ∈ [0, π] and |up(t)| ≤ 1, this convolution
is non-negative. Equivalently then

x1,p(tm) ≤ x1,u+(tm) = c, (30)

which implies that x1,p(tm) /∈ T \B. Furthermore, we
showed in Lemma 3 that a trajectory will not exit T via
segment AC. Therefore, xp(tm) ∈ U+ ∪ B. Thus, the state
must exit T \B via either HF, CG, or FG.

Lemma 5: If the state exits T along FG with x =
[c + β, xexit2 ]T , where β ∈ (0, c], (illustrated as “trajectory
3” in Figure 4), then the state will enter B with x1 ≥ c− β
and xentry2 ≤ xexit2 . Equality holds when c− β ≥ x`.

Proof: Suppose the state exits T with x =
[c + β, xexit2 ]T . Recalling that the mass of the system is
1
bo

and the spring constant is 1
c , we find that the total energy

(kinetic and potential), T , of the system at this point is

T =
1

2c
(c+ β)2 +

1

2bo
(xexit2 )2. (31)



Now assume u(t) = 1 over an interval from x1 = c + β
to x1 = c − β. Integrating u(t) over this interval yields the
work done by the control,

Wu =

∫ c−β

c+β

(1)dx1 = −2β. (32)

Now consider the change in potential energy of the spring
due to the same change in x1,

∆Ts =
1

2c
(c− β)2 − 1

2c
(c+ β)2 = −2β.

Hence, after the state has traversed a distance ∆x1 = 2β, by
conservation of energy, we must have xexit2 = xentry2 . Since
the nonlinear portion of the lower boundary is symmetric
about c, the state enters B precisely at x = [c−β, xexit2 ]T if
c−β ≥ x`. If c−β < x`, the trajectory intercepts the linear
region of B with x1 > c − β and x2 < xexit2 , i.e., before
x = [c− β, xexit2 ]T .

Furthermore, the time for this to occur is bounded by
t < π

ω since such trajectories are less than a half rotation.

Lemma 6: Suppose the state exits T via the segment CG.
Then the state will enter B in t ≤ 2π

ω .
Proof: Since the x2-component of a state along CG is

positive, x1 is increasing and the state exits T . When a state
exits via CG, it re-enters the time-optimal region U−and will
cross the x1-axis with x1 ∈ (2c, 4c]. Using (21), an upper
bound on x1 at the crossing can be found by considering an
xo at point C or xo = [2c, 2

k2
]T in (21). Using x` = 2

5c and
α = 1 maximizes xo2 to be ωc. Equation (21) then gives

x1(t1) = c(
√

10− 1). (33)

This means that at the end of the next switch,
|x1| ≤ x1(t1)− 2c < c so the time for the state to exit T
via CG and enter B is bounded by t < 2π

ω .
Theorem 3: All states enter B in finite time.

Proof: By Theorem 1, all states enter T in finite time.
By Lemma 4, all states that enter T \B will exit T \B in less
than half a period. Lemmas 5 and 6 show that a state that
exits T \B and enters U+ or U− will enter B in less than
one period. Hence, a (very loose) upper bound on the time,
tB, for a state to reach B upon entering T \B is given by
tB <

3π
ω .

VII. B IS ASYMPTOTICALLY STABLE IN THE SENSE OF
LYAPUNOV

We have shown that all states will become trapped within
B. Now, we show that for x ∈ B, x tends asymptotically to
the origin. We do this by determining a Lyapunov function
V (x) for the Region B.

Define the Lyapunov candidate function V (x) as

V (x) :=
1

2
x22 +

∫ x1

0

p(s)ds, (34)

p(x1) := ω2x1 + bok2fp(x1). (35)

To show that (34) is a Lyapunov function, we prove the
following lemmas.

Lemma 7: V (x) is positive-definite ∀x ∈ B.
Proof: Clearly, 1

2x
2
2 ≥ 0. Furthermore, by

Lemma (A-3), p(−x1) = −p(x1) ∀x1 ∈ B and p(x1) ≥ 0
for x1 ≥ 0. This implies that

∫ ±x1

0
p(s)ds > 0. Therefore,

V (x) ≥ 0 ∀x ∈ B.
Furthermore, since we have just shown that both terms

of V (x) are positive, it is a trivial observation that V (x) =
0 ⇐⇒ x = 0

Lemma 8: V̇ (x) is negative-definite ∀x ∈ B.
Proof: Differentiating (34) yields

V̇ (x) =− bok2x22 ≤ 0, ∀x ∈ B. (36)

Clearly, (36) is negative semi-definite for all x ∈ B. Further-
more, suppose x = 0. Then by inspection, V̇ (0) = 0.

Now, suppose V̇ (x) = 0. Then it must be that x2 = 0.
Thus when V̇ (0) = 0, possible solutions to (1) must have
the form [x1, 0]T . Hence, x2 = 0 which implies that

ẋ2 = 0 = −ω2x1 − bok2fp(x1). (37)

Now fp(x1) = 0 ⇐⇒ x1 = 0, x ∈ B (recall the linear
region through the origin). By Lemma A-3, x1 and fp(x1)
always have the same sign. Thus, (37) is only satisfied if

ω2x1 = −bok2f(x1) = 0 =⇒ x1 = 0. (38)

Therefore, V̇ (x) is negative-definite.

VIII. RESULTS

We simulated the PTOSω controller in SIMULINK using
bo = 1.8276 × 107 and ω = 1.9949 × 103 rad/s which are
representative of a simplified AFM model [3]. We chose an
initial condition of x = [3c, 0]T .

Using the PTOSω controller, we simulated both the ideal
plant and a plant where bo is increases by 5% and ω is
decreased by 5%. The size of the linear region is x` = 0.1c
and α = 0.8. We used a fixed time step of 1 × 10−9 s for
all simulations. These results are shown in Figure 5. The
solid green curve represents a trajectory where we assume
a perfect model, while the dashed blue curve represents the
imperfect model. Figure 6 shows the control history of the
PTOSω controller which clearly demonstrates the success of
the method. Note how the PTOSω controller in Figure 6
smoothly brings both systems to the origin free of any
chattering in the control signal.

IX. CONCLUSIONS AND FUTURE WORK

We have developed a near time-optimal control law, the
PTOSω, for a second-order oscillator system. We have shown
that this control law leads to a stable closed-loop system
under certain design constraints. However, we note that we
have developed this law for a system with zero damping
and only as a regulator. To make a control law which is
more realistically applicable, future work will build on this
development to construct a similar control law for set point
tracking of systems with damping. Future work will also seek
experimental validation through implementing these PTOSw
controllers on an actual AFM.



Fig. 4: Plot showing possibilities of how the
state enters B.
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APPENDIX

Lemma A-1: On the upper saturation boundary BC, the
RHS of (28), which we call u̇u((x1(t)), is monotonically
increasing with x1.

Proof: To show this, we will show that
d
dx1

u̇u(x1) > 0 over the entire interval, x1 ∈ [x`, 2c].
Calculating the derivative, we see that

d

dx1
u̇u(x1) =

2ωα√
2αcx1 − αx21

+
2ωα2(c− x1)2

(2αcx1 − αx21)3/2

+ k2ω
2(1− α) > 0. (A-1)

holds for x ∈ [x`, 2c] and α ∈ (0, 1].
Lemma A-2: Call the upper saturation boundary fu(x1) =

−fn`(x1) + 1
k2

. Then, fu(c) < 0 ∀|x`| < 2
5c.

Proof: Along the upper saturation boundary, u(t) =
−1, so at x1 = c, we have

u = −1 = −k2fp(c)− k2x2. (A-2)

Requiring that x2 < 0 gives

x2 =
2

k2
− ωc

√
α < 0. (A-3)

Inserting k2 from (16), yields x` < 2
5c.

Lemma A-3: Let p(x1) be given by (35). Then
p(x1)x1 > 0, x ∈ B.

Proof: In other words, p(x1) is an odd function and
positive for x1 > 0. Clearly, this is true for the ω2x1 term of
(35). Furthermore, by inspection, this is also true for f`(x1)
in (14). Now, we show that fn`(x1) > 0, x1 ∈ B\L, where
fn` is given (15). We want, i.e., that

ω
√

2αc|x1| − αx21 >
ωαcx`√

2αcx` − αx2`
. (A-4)

Now, recalling that x1 ≤ c,∀x1 ∈ B we make the LHS as
small as possible by letting x1 = x`. Easy simplifications
yield c > x` which holds since we require x` < 2

5c. To see
that fp(x1) < 0 for x1 < −x`, note that the sgn(·) in (15)
will flip the inequality and we will have again (A-4). Thus,
fp(x1) is an odd function , and positive for positive x1.


