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Abstract—Undersampling-based approaches in Atomic Force
Microscopy (AFM) aim to reduce the time to acquire an image
by reducing the number of measurements needed while still
maintaining image quality. The approach consists of two com-
ponents: data acquisition and image reconstruction. Successful
practical implementation involves solving a variety of non-trivial
problems. In this paper, we describe an implementation based on
a collection of short scans known as µ–paths, and we demonstrate
it on a commercial AFM using a grating sample. Reconstructions
are made from the data using a new variant of basis pursuit
designed to reduce artifacts arising from the sampling pattern.
The quality of the resulting images is compared to images from
standard raster scans of the same regions at comparable imaging
rates using both the peak signal-to-noise ratio and the structured
similarity index metric and a new metric we call the relative
damage index. We also compare to simple subline sampling where
only a subset of the rows of the image are acquired (followed by
reconstruction). These experiments show that at low sampling
densities and slow scan rates, µ-path scanning achieves better
image quality in less time than subline sampling. Conversely,
for faster scan rates subline sampling is faster and, for higher
sampling densities, achieves comparable image quality.

I. INTRODUCTION

The Atomic Force Microscope (AFM) is a powerful instru-
ment capable of imaging sample surface topography, material
characteristics, and other surface properties, with nanometer
scale precision. AFMs acquire sample information by mon-
itoring the deflection of the cantilever caused by the tip-
sample interaction force. In general, feedback control is used
to hold the deflection signal constant and information about
the property of interest is inferred from the applied control or
the measured dynamics of the cantilever [1]. Because of its
versatility, spatial resolution, and ability to image in vacuum,
air, and liquid, AFM is widely used in a variety of disciplines,
including physics, biology, and materials science [2]–[6].

In addition to imaging static samples, AFM is used to
study dynamics in systems with nanometer-scale features [3],
[7]–[9]. The image acquisition time of conventional AFMs,
however, is typically on the order of seconds to minutes,
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severely limiting the time-scales that can be explored. Driven
by the need for faster imaging, there continue to be many
active research efforts to overcome this challenge. Since an
AFM is fundamentally a mechanical microscope, many of the
approaches to high-speed AFM (HS-AFM) have focused on
modifications to the physical components. These have included
the use of small, fast cantilevers [10]–[12], the development
of faster actuators [13]–[15], and the application of advanced
controllers [16]–[19]. By combining different techniques, there
are current generation, high-end instruments that can image
at rates on the order of 1-10 frames/sec [9]. However, the
fastest rates are achieved only over small scan ranges and there
remain many systems of interest whose dynamics are faster
even than these instruments can achieve. In addition, there is
a large installed base of much slower AFMs that can benefit
from alternative approaches to improving imaging rates.

A complimentary class of HS-AFM approaches modifies
the sampling scheme rather than the system mechanics. Al-
ternative scan trajectories like spirals, cycloids, and Lissajous
figures have been used in place of the standard raster pattern.
While these trajectories are easier for the actuators to follow,
allowing the tip to be moved more quickly and leading to faster
image acquisition on an otherwise unmodified instrument
[20]–[24], they are ultimately limited by the vertical bandwidth
of the instrument for regulating the deflection signal [25].

Non-raster scan patterns can also improve imaging rate by
reducing sampling rather than increasing speed. This class
includes local scanning methods that use the measurements
in real-time to steer the tip to focus the scan on features of
interest [26]–[29]. While these have been shown to yield an
order of magnitude or better improvement in imaging rate,
they are limited in the class of samples that can be imaged
and do not produce a full image with all the context.

An alternative group of non-raster scanning schemes, in-
troduced in [30], [31], seeks to produce the full image but
using fewer measurements than in a full raster scan. We refer
to this as undersampling. The data acquisition time is then
reduced by having a shorter total scan path. Taking advantage
of the redundancy in many natural signals of interest, the final
surface image can be recovered from the limited number of
measured pixels using a variety of reconstruction methods such
as inpainting or schemes based on the theory of compressive
sensing (CS) [32], [33]. In addition to reduced imaging time,
undersampling schemes also reduce tip-sample interactions,
thereby reducing the likelihood of tip wear or sample damage.
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One simple way to create undersampling schemes is by
modifying existing full scan patterns including raster, spiral,
and Lissajous scanning. For example, subline sampling is
generated by randomly skipping some of the horizontal lines
in raster scanning [32], [34]. For spiral and Lissajous patterns,
the scan parameters can be selected to ensure the trajectory
only passes through a desired fraction of the pixels in the final
image. The scanning time for these smooth undersampling
patterns can be estimated based on the proportion of the pixels
in the trajectory. However, results in the literature of CS make
clear that in general randomness in the sampling pattern is
essential for creating good reconstructions.

In AFM, implementing a truly random pattern requires that
the tip be engaged with the surface to collect a measurement,
lifted and moved to the new location, and engaged again.
Because the re-engagement process is typically slow, this can
lead to excessively long image acquisition times and negate
the gains from undersampling [31]. In [35], we introduced
an undersampling scheme, called a µ-path pattern, which
consists of short randomly placed, horizontal scans (illustrated
in Fig. 1). It is designed to balance randomness (to ensure
good reconstruction) with continuous scanning (to reduce the
number of tip engagements).

Our previous work on the µ-path pattern, using theoretical
calculations, simulations, and a preliminary implementation,
demonstrates that the approach can reduce scanning time while
maintaining faithful image reconstruction [35]–[37]. The main
contributions of this paper relative to that past work are:
• We introduce a new reconstruction algorithm designed

to minimize artifacts arising from the structure of the µ-
path pattern. The algorithm is described and compared in
simulation to existing reconstruction methods in Sec. II.

• In our prior experimental prototype [37], we used integral
controllers for all three axes for both raster and µ-path
scans. Here, we design compensators for each axis using
standard loop-shaping techniques (Sec. IV-C) that result
in a substantial increase in closed-loop bandwidth (e.g.,
50 Hz to 450 Hz for the Z-axis). We show in Sec. IV-D
that one of the limitations of µ-path scanning is the
discontinuous X-axis reference (e.g., in moving between
µ-paths) which excites the cross-coupling modes between
the X and Z axes. We mitigate the cross coupling with
a feed-forward design. While the use of such control
approaches is not new, this work highlights the control
challenges that arise from non-standard scanning ap-
proaches and the importance of good control design when
transitioning such schemes from simulation to practice.

• We experimentally compare (Sec. VI) µ-path scanning to
full density raster scans and to coarse raster scans which
are interpolated to a full image. The clear advantage of a
coarse raster scan is that its implementation only requires
adjustments to the data collection and post-processing.

• The bulk of this work is based on experiment, not
simulation, in contrast to prior work by ourselves [33],
[35] and others [38]–[40]. Our main focus here is on
delineating the practical issues which must be addressed
to effectively realize µ-path scanning, which has only
seen limited attention in the past.

Fig. 1: An example of the horizontal µ-path sampling pattern
for a 256×256 pixel image with 35 pixels in each short scan
and a total of 20% pixels scanned.

II. RECONSTRUCTION METHODS

Compressive sensing (CS) is a signal processing technique
which aims at signal reconstruction from a relatively small
(sub-Nyquist limit) number of measurements [41]. It takes
advantage of the approximate sparsity of real-world signals,
that is, that many coefficients of such signals are close to zero
when represented in an appropriate basis. CS methods seek
the true image signal x ∈ Rn from the observation equation,

y = Rx = RUη, (1)

where y ∈ Rm is the observation vector, R is an m × n
matrix defining the measurements, U is an n × n sparsity
basis and η is the sparse representation of x in the domain of
U . In general, m � n. In an imaging application, where the
underlying signal is a matrix X ∈ Rh×s, we take x = vec(X),
where the vec(·) operator stacks the columns of a matrix.

As AFM scans are natural images, it is reasonable to
expect that they satisfy the sparsity assumption and can take
advantage of the reduced number of measurements needed to
decrease the imaging time. An AFM probe can only measure
a single pixel at a time. Thus the rows of R are a subset of
those of an n × n identity matrix. Ideally, the sparsity basis
and the measurement matrix R have a low mutual coherence,
a measure of how each of the rows of R (the measurements)
“spreads out” in the domain of U [42]. In the following, we
assume that UTU = I , and in the simulation and experimental
results we make the specific choice of UT as the Discrete
Cosine Transform (DCT). The DCT basis provides a good
balance between achieving a low mutual coherence between
U and the µ-path sensing matrices R and yielding a high
sparsity for typical AFM sample images.

Basis pursuit with denoising (BPDN) is a common realiza-
tion of the CS-based reconstruction problem, and is given by
the optimization

min
x

∥∥UTx
∥∥
1

subj. to ‖Rx− y‖2 < σ (2)

where σ represents uncertainty in the measurements. BPDN
essentially searches for the sparsest signal among the candi-
dates that match the measurements to within the tolerance σ.
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Fig. 2: Reconstruction comparison between BPDN and BPVV. (first column) Original raster-scanned image. (second column)
BPDN reconstruction from random µ-path sampling. (third column) BPVV reconstruction from the same sub-sampled data.
(remaining columns) Corresponding details from the red boxes indicated in the raster image. The top row uses 15% sampling
with 50 pixel µ-paths and the bottom row uses 25% sampling with 25 pixel µ-paths. The results show that BPVV reduces the
artifacts arising from the horizontal scans of the µ-path pattern that appear in BPDN reconstructions.

While BPDN is effective in the general setting, using it
for reconstruction from horizontal µ-path samples can yield
artifacts in the vertical direction (orthogonal to the µ-paths)
leading to strong discontinuities in the image. These artifacts
grow more prominent as the length of the µ-paths increases
[35] due to increased mutual coherence between the measure-
ment matrix R and the sparsity basis U . However, longer µ-
paths means fewer µ-paths and thus shorter scan times.

To mitigate these affects, we propose a new variant of
BPDN that we term basis pursuit with vertical variation
(BPVV). BPVV adds a vertical total variation penalty in the
spatial domain to the optimization objective, modifying (2) to

min
x∈Qp

f(x) = min
x∈Qp

∥∥UTx
∥∥
1
+ α ‖Dvx‖1 + β ‖Dhx‖1 (3)

= min
x∈Qp

∥∥WTx
∥∥
1

(4)

where
W =

[
UT αDv βDh

]
with Dvx = vec(∇vX) (resp., Dhx = vec(∇hX)) represent-
ing a discrete gradient of a matrix in the vertical (resp.,
horizontal) direction (see, e.g., [43, Sec. 6.1]). Thus, in (3),
‖Dvx‖1 (resp., ‖Dhx‖1) is the total variation (TV) of the sig-
nal in the vertical (resp., horizontal) direction. The parameters
α and β are weighting parameters. The description of BPVV in
(4) can be interpreted as changing our assumption of sparsity
in the DCT basis to assuming sparsity in an overcomplete
dictionary [44]. When written as (4), the problem is in a form
that may be solved with NESTA [43]. Note that the BPVV
designation technically holds only for β = 0; our experience,
however, shows that including a small but nonzero β (relative
to α) improves reconstruction. Simulation results indicate that
the optimal values of α and β likely depend on a variety of
factors including µ-path length and image type. We leave a
rigorous study of these relationships to future work.

A simulation comparison between BPDN and BPVV is
shown in Fig. 2. The first column shows two raster scans: the
top is a 512×512 pixel image of a CS-20NG grating (Ted
Pella, USA) acquired with an Agilent 5400 AFM and the
bottom is a 256×256 pixel image of DNA acquired with an
Agilent 5500 AFM. For the CS-20NG grating, we sampled
15% of the pixels with 50 pixel µ-paths and 25% of the
DNA image with 25 pixel long µ-paths. The second column
shows the full frame reconstructions using BPDN and the
third column shows the result using BPVV (with α = 0.75
and β = 0.1). The fourth column zooms in on the region
indicated by the red box in column one. Similarly, the fifth
and six columns show the detail of the reconstructions. The
reconstruction results show that the artifacts apparent in the
BPDN reconstruction are largely mitigated using BPVV. Thus,
in the remainder of the paper, we focus exclusively on BPVV.
These reconstructions with BPVV took about 1.5 seconds for
the DNA image and about 7 seconds for the CS-20NG (on a
typical desktop computer).

III. EXPERIMENTAL SETUP

Fig. 3: Schematic diagram of the experimental AFM setup.

Our experimental setup (see Fig. 3) consists of an Agilent
5400 AFM retrofitted with an nPoint NPXY100A piezoelectric
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stage, a cRIO-9082 embedded controller (National Instru-
ments), and a standard desktop computer. The piezoelectric
tube scanner of the AFM is used only for vertical motion
while the nPoint stage is used for the lateral (XY ) motion.

Through a breakout box, the Agilent 5400 provides access to
the Z-axis deflection signal. When the Agilent software is set
to open-loop mode, a ±10 volt input on the standard control
box allows control of the Z-axis of the N9524a piezo scanner,
which has a total range of 7 µm. Initial (coarse) engagement of
the tip to the sample is performed using the PicoView software
before control is handed over to the custom controllers. All
imaging is done using contact (constant force) mode, though
extending to other imaging modes such as intermittent contact
(tapping) mode is straightforward.

All control logic is programmed using LabVIEW 2019 and
compiled to a Xilinx Spartan-6 LX150 Field Programmable
Gate Array (FPGA) inside the cRIO-9082. The cRIO includes
16-bit, 100 kHz analog-to-digital input (NI-9215) and digital-
to-analog output (NI-9263) modules. All control loops are
implemented using a 25 kHz sampling rate.

IV. IMPLEMENTATION

Implementing the µ-path scheme involves operating the
AFM in several distinct stages. In the XY -direction, the sys-
tem transitions from tracking a step command when moving
to a new measurement location to tracking a short ramp
during the actual µ-path scan. In the Z-direction, the system
must transition between tip descent, surface scanning, and tip
retraction. Two cycles of this sequential process are illustrated
by the time series in Fig. 4. The following subsections describe
in more detail several features of the CS scanning process.

Transition between, and operation in, these different stages
is implemented as a simple state machine, summarized in
Table I. The main job of the state machine is to adjust the
reference signals to accomplish each task. In the following,
rX , rY , and rZ refer to the references for the X , Y , and Z
axes, respectively. The Z-axis setpoint rZ takes on values rZ,s

(the scanning setpoint) and rZ,up (the retraction setpoint).

TABLE I: Summary of the tasks for µ-path scanning.

state rX ,rY rZ next-state

(1) XY -move setpoint rZ = rZ,up (2)
(2) tip-engage setpoint rZ = rZ,s (3)
(3) pre-scan ramp rZ = rZ,s (4)
(4) µ-path scan ramp rZ = rZ,s (5)
(5) tip up setpoint rZ = rZ,up (1)

A. Cantilever setpoint during the XY -move

In order to minimize scanning time, the tip should be
moved as fast as possible when transitioning between µ-path
locations (state (1)). Since such speeds can be beyond the
bandwidth of the Z−axis controller, it is important to reduce
the tip-sample interaction force to prevent tip wear and sample
damage. In our initial implementation [37], this was achieved
by insisting that during tip-retraction (state (5)), the cantilever
tip should fully break contact with the surface. Here, we
impose no such requirement. Rather, we change the Z-setpoint

Fig. 4: Several CS cycles. Each state is indicated by color.
The deflection is shifted so its free value is zero.

during tip-retraction to only pull away far enough that the
deflection signal stays low (i.e., below the scanning setpoint),
even while we run across the surface. We choose rZ,up so
that the interaction between the tip and sample becomes
purely adhesive. In general, stable imaging is not possible
at this setpoint and complete dis-engagement occasionally
occurs. This can be seen in the bottom pane of Fig. 4 during
the second XY -move (black portion) where the tip detaches
partway through the move. When dis-engagement occurs, the
Z-axis control loop implements an anti-windup scheme to
prevent the control from saturating. In our implementation,
we programmatically stop the accumulator from accumulating
while dis-engagement is detected.

Only moving the tip into the adhesive region during the
XY move saves considerable time compared to completely
detaching the tip between each µ-path. Selecting a Z-setpoint
lower than the scanning setpoint ensures very low normal
forces. However, it is important to note that with the tip
even lightly engaged, the move to the new scanning location
may cause shear forces which may be a challenge for some
biological samples. If necessary, the tip can be completely
disengaged, though at a cost in imaging time. Completely
characterizing the damage done to the tip and sample with
this scheme compared to complete detachment (which can also
damage the probe [45]), remains an outstanding goal.

B. The pre-scan

After the tip-descent, we begin scanning in a “pre-scan”
phase (state (3)), which is the turquoise “tip settle” portion of
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Fig. 5: Block diagram of the AFM control loop for all three axes. Not shown is anti-windup for the Z-axis integrator, which
is active when rZ = rZ,up (states (1) and (5)) where sensor saturation is possible.

the trajectories in Fig. 4. There are two reasons for this. First,
we have observed that there is less noise in the deflection
signal while the XY -stage is in motion compared to sitting
still. Second, and more importantly, it lets us bring the X-axis
to its scanning velocity at the same time the transients from
the Z-axis die out. Without this, we must extend the µ-path
by a distance equal to the steady-state error following a ramp.
For an arbitrary scan speed, this means the µ-path scan would
need an extra

N =

⌈
lim
z→1

1−HX

z − 1

⌉
(5)

time steps, where HX is closed-loop transfer function for the
X-axis. For our system N = 111. By initiating the scan while
the Z-axis settles, we eliminate much of this overhead.

C. Control

The control structure for each axis, shown in the block
diagram in Fig. 5, is similar and essentially consists of a set of
filters in series with a PI controller. The open-loop frequency
responses for the X and Y axes are shown as the black curves
in Fig. 6a and for the Z-axis in Fig. 6c. The first resonance
of each axis is the bending mode, which appears at 215 Hz
for the Z axis and about 350 Hz for the X and Y axes.

The filter portion of the Z-axis controller DZ is second-
order and simply inverts the complex-conjugate pole-zero pair
at 215 Hz. This allows the gain of the PI controller to be
increased substantially. The closed-loop achieves a bandwidth
of about 450 Hz, as shown by the red curve in Fig. 6c. Without
this inversion, the bandwidth is limited to about 50 Hz.

We take a similar approach for the X and Y axes. The
filters DX and DY invert the bending modes at 350 Hz and
add notch filters at the main resonant peaks near 650 Hz. The
resulting closed-loop transfer functions are shown as the red
curves in Fig. 6a.

In general, the X-axis positioning requirements are more
stringent for both CS and raster scanning. Due to the step
inputs the X-axis must track, we have found that compensating
hysteresis and creep to be particularly helpful during µ-path
scanning. Thus, the X-axis compensator also includes an
inverse creep and hysteresis model. The hysteresis model is
a modified Prandtl-Ishlinskii type and is based on the work
of [46]. The drift compensation models the piezo creep as a
simple second-order transfer function with real poles and zeros
whose inverse is part of DX . In Fig. 5, the hysteresis inversion
is indicated by H−1X [·]. We have found that the inclusion of
these extra compensators limits the overshoot of the X-axis
during larger moves between different µ-paths (e.g., without

them, the X-axis trajectory in Fig. 6b would show noticeable
overshoot). More details on fitting the creep and hysteresis
models can be found in our other work [47].

D. Feedforward Control

As the bottom row of plots in Fig. 6a makes clear, there
is a strong cross-coupling from the horizontal plane to the Z
axis (the coupling from uZ to the X and Y axes is very weak,
and so is not shown). Our SISO control scheme does little to
attenuate the resonances of GZ,uX

and GZ,uY
. In particular,

there are modes in both these transfer functions at 215 and 505
Hz that do not appear in a SISO model of GX,uX

or GY,uY
.

For raster scans, the frequency content of the X-axis refer-
ence triangle wave decays like 1/n2 with a gain proportional
to the raster frequency. In contrast, the X-axis reference for a
µ-path scan is composed of a sequence of steps and ramps. The
inclusion of the (discontinuous) steps means we should expect
the µ-path X reference to decay like 1/n. Thus, while the
cross-coupling can induce Z-axis vibrations for faster raster
scans, it is especially problematic for µ-path scanning. This
is illustrated in the left column of Fig. 6b, which shows a CS
cycle during which the X-axis makes a 5 µm move, which
induces excessively large vibrations in the vertical control.

In principle, one could mitigate these issues with a full
MIMO control design. In this work, we opt for a much simpler
feedforward scheme. For CS scanning, we insert feed-forward
filters (FX and FY in Fig. 5) with three notches: at 215 Hz,
350 Hz, and 505 Hz. Both filters are shown in Fig. 6a as the
dashed-pink curves. The resulting overall FRF, shown as the
blue curves, show a dramatic reduction in the cross coupling.
A similar effect could be achieved by using a simple low-pass
filter. However, to achieve the same 40 dB of attenuation of the
mode at 215 Hz would require, e.g., that a two-pole low-pass
filter have its cut-off frequency at about 20 Hz. Thus, while
our feedforward scheme slows the X-axis down, we achieve
better bandwidth than we would with a simple low-pass filter.

For raster scanning, we set FX = FY = 1 and instead
take advantage of the periodicity of the triangle-wave X-
axis reference. We modify the triangle wave to a truncated
Fourier series, where each Fourier coefficient is scaled by
the inverse of the closed-loop FRF at the corresponding
frequency. See, e.g., [48] for more details on this strategy.
We truncate this series such that the highest frequency is
smaller than 200 Hz, which means that we should never excite
the problematic GZ,uX

modes. This scheme implies that the
effective bandwidth of the X-axis controller is higher while
raster scanning than while CS-scanning. On the other hand, it



6

(a)

(b)

(c)

Fig. 6: (a) MIMO closed and open-loop frequency-response functions (FRFs), showing the dramatic effect on GZ,uX
and

GZ,uY
when the feedforward compensators are used for the X and Y axes. (b) The vertical control uZ (top) after a large

move in the X-direction (bottom) without (left column) and with (right column) the feedforward compensation. (c) Frequency
response of the Z-axis in open-loop (black) and closed-loop (red).

also implies that for faster scan rates, fewer Fourier coefficients
are used and the triangle-wave approximation is worse, leading
to scans which cover slightly less than the intended range.

V. METRICS

In this section we introduce the three metrics used to assess
our results in Sec. VI. The first two seek to quantify image
quality between two images. To that end, define a master
image as X and a reconstructed or corrupted version as Y ,
with each having s × h = m pixels. Let x = vec(X),
y = vec(Y ), and L be the dynamic range of the master image
x. The first metric is the peak signal-to-noise ratio (PSNR):

PSNR(x, y) = 10 log10
L2√

1
m

∑m
i=1(xi − yi)2

.

The second metric is the Structured Similarity Index Metric
(SSIM). The goal of the SSIM is to compare the structure,
luminescence, and contrast of two images. It is built up from
the means (µx and µy), standard deviations (σx and σy), and
covariance (σxy) of the image vectors x and y. The SSIM
definition used in this paper is

SSIM(x, y) =
(2µxµy + C1)(2σxy + C2)

(µ2
x + µ2

y + C1)(σ2
x + σ2

y + C2)

where the constants C1 and C2 are regularizing constants
to prevent singularity if, e.g., µx = µy = 0. We use the
default values suggested in [49] of C1 = (0.01L)2 and
C2 = (0.03L)2, where again, L is the dynamic range. In

general two images which are identical will yield an infinite
PSNR and an SSIM of 1.

A. Limitations of SSIM and PSNR

The SSIM and PSNR have become reasonably popular in
studies comparing simulated AFM image reconstructions [33],
[38], [40]. However, it remains somewhat of an open question
how to best compare experimental AFM images. While we
use the SSIM and PSNR in Sec. VI, we believe those numbers
should be interpreted with some caution. In our experimental
setup, actuation in the XY -plane happens via the nPoint piezo
stage and the XY -direction of the original piezo tube scanner
is uncontrolled. This leads to substantial drift between images.
To illustrate this, we took a sequence of 6 raster scans of a
sample grating, each at a 1 Hz scan rate over a 5 µm × 5 µm
area. The left image of Fig. 7 shows the error between the
first and sixth image. The PSNR and SSIM between the first
and second images are 15.08 and 0.51 while between the first
and sixth they are 8.49 and 0.26. Despite this, on their own
each image appears to have good quality.

To mitigate this effect, we use an image alignment tech-
nique based on the 2D cross-correlation between each image.
Essentially, this takes a sub-slice of the master (first) image
(here, a 25 pixel inset on each edge), and finds the offset in
the other image that produces the smallest error. The result of
this procedure is shown in the right image of Fig. 7. Although
the situation is improved compared to the un-aligned images,
there is still noticeable stretching (the upper and lower portions
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Fig. 7: Errors between the first and sixth raster scans in a
sequence of six 1.0 Hz raster scans. (left) Errors without align-
ment. (right) The same data but aligned via cross correlation.

appear considerably worse than the middle). Notably however,
with the alignment technique, the SSIM is 0.72 for both the
second and sixth image images and the PSNR increases to
23.40 and 22.68, respectively.

B. The relative damage index

The PSNR and SSIM metrics only assess the similarity of
two images. However, in AFM imaging, pure image quality
is not the only concern, particularly for delicate samples.
While damage to the specimen is not really a concern while
imaging a hard calibration grating, it plays a prominent role
for biological samples [50], though damage to the probe itself
is still a concern even with hard samples. In general, the
faster the scan rate, the more difficulty the Z-axis control
will have in following the sample surface, which results in a
larger deflection signal Zd over more time. The actual damage
done by a given Zd will depend on the spring constant of
the cantilever and the softness of the specimen. To capture
these concerns, we propose a metric, which we call the
Relative Damage Index (RDI), that computes the power in
the deflection signal for a given scan. The RDI, given by

RDI =
1

Ts|I|
∑
k∈I

(Zd,k − rZ,s)
2
, (6)

with I = {k : rZ,k = rZ,s} and Ts the sample period, accu-
mulates the deflection signal while scanning as a measure of
the net force applied to the specimen over time.

VI. EXPERIMENTAL RESULTS

We compared µ-path scanning to two scenarios: first to full
resolution raster scans at several scan rates in Sec. VI-A, and
second, to coarse raster scans in Sec. VI-B.

A. Comparison to full raster

We imaged a 5 µm × 5 µm area of a sample grating with
20 nm deep holes on a 500 nm pitch (Ted Pella, CS-20NG).
Standard raster scans with 512 lines were performed at 1.0 Hz,
2.5 Hz, 5.0 Hz, and 8.0 Hz. We also took µ-path scans with
designed densities of 12.5% and 25%. The same µ-paths were
used throughout the experiments. 512× 512 pixel images were
reconstructed using BPVV with α = 0.75 and β = 0.1. The

TABLE II: State times (in seconds) for the CS scans in Fig. 8

description move engage pre-scan scan tip-up total

1.0 Hz, 12.4 % 6.16 1.13 3.82 32.25 0.24 43.60
5.0 Hz, 12.4 % 6.09 1.01 3.82 6.73 0.08 17.73
8.0 Hz, 12.7 % 6.14 1.02 3.82 4.35 0.08 15.40
1.0 Hz, 24.0 % 11.84 2.40 7.62 64.41 0.15 86.42
5.0 Hz, 25.3 % 11.54 2.19 7.62 13.44 0.53 35.32
8.0 Hz, 24.8 % 11.73 2.06 7.62 8.68 0.15 30.25

CS scans were taken with scan velocities equivalent to raster
scan rates of 1.0 Hz, 2.0 Hz, 4.0 Hz, 5.0 Hz and 8.0 Hz. For
all CS scans, the µ-paths were 500 nm long, which translates
to 51 pixels. For each image, the µ-paths were scanned in a
left-to-right, bottom-to-top fashion.

The free value of the deflection signal was about −0.6 volts.
The scanning reference was set to rZ,s = −0.3 volts (for both
raster and CS) and the withdraw reference to rZ,up = −0.8
volts. We set the XY -settle boundary to ±0.02 µm and
required 20 samples within this boundary before moving to
the Z-engage state. The pre-scan length was 150 time steps.
The cantilever was a Budget Sensors ContAI-G, with nominal
length of 450 µm and spring constant of 0.2 N/m.

For the raster scans, we discarded data from the re-trace and
divided the remaining data for each scan line into 512 bins
based on the X sensor measurements. Data in each bin were
averaged to obtain the value of one pixel. To remove the effects
of piezo creep and sample tilt, we de-trended each individual
line. De-trending each line causes the flat portion between the
holes in the horizontal direction to appear at a different height
than the flat portion between holes in the vertical direction.
To remove this effect, we selected a column of pixels on the
left and right side of each image that did not cross any holes
(i.e., a vertical line through the flat area), and registered each
scan line to a common height along these columns. This step
eased comparison with the CS scans and was inspired by a
feature in the AFM image processing toolbox SPIW [51]. A
subset of the resulting images are shown in Fig. 8. The rows
of pixels indicated by the red lines are shown as cross sections
in Fig. 9. For the CS scans shown in Fig. 8, Table II breaks
down the amount of time spent on each task.

Qualitatively, the CS images are of high quality despite
the significantly lower number of measurements, though the
reconstructions from BPVV do show a small amount of
blurring at their edges. For a quantitative comparison, we
computed the SSIM and PSNR for each raster and CS scan,
using the 1 Hz raster scan as the master and also computed
the RDI metric. These are plotted against total acquisition
time in Fig. 10. Roughly speaking, image quality improves
as acquisition time increases. However, the metrics are quite
noisy and the results of the different methods are overlapping,
making it difficult to extract a general result on the scanning
approaches.

Things are clearer if we plot the RDI for each scan against
total acquisition time, shown in Fig. 10c. As one would
expect, as imaging time decreases, the RDI for each scan type
increases. From Fig. 10c, we see that for a fixed RDI, CS has a
faster imaging acquisition rate. Conversely, for an acquisition
time below a given threshold, CS offers a smaller RDI than
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Fig. 8: Raster and compressed sensing images of a 5 micron by 5 micron area of the CS-20NG grating. All images are 512×512
pixels. The rows of pixels indicated by the red lines are shown in Fig. 9.

Fig. 9: Rows of pixels, as indicated by the red lines in Fig. 8.
For clarity, not all images are included.

a full raster scan. The amount of improvement is best if we
need a very low RDI: for example, if we want to hold the
RDI below 2, then we have to take the 1 Hz raster scan (512
seconds) while we can achieve the same RDI via CS in about
42 seconds with the 12.5% sampling, a speed improvement of
over a factor of 10. However, the advantage of CS over raster
narrows as the allowable RDI is increased as a result of the
constant overhead imposed by the engage/disengage and XY -
move states in the CS scans. For example, the 8 Hz raster scan
and 8 Hz, 12.5% CS scan have comparable RDIs, but now CS
is only about 5 times faster.

B. Comparison to subline sampling

Many subline sampling papers assume that the lines to
sample are selected randomly [33], [38]. An even simpler
alternative to µ-path sampling is to take a standard raster scan
with fewer lines. Here we consider scanning images with 128
and 64 lines. In each case, the data for each line is first divided
into 512 bins to yield data that is 128 (resp., 64) pixels by
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(a) (b) (c)

Fig. 10: Metrics for raster scans at 512, 128, and 64 lines and µ-path scans at 12.5% and 25% sampling. The scan rate is
indicated by color while the scan style is indicated by marker style. (a) SSIM as a function of total acquisition time. (b) PSNR
as a function of total acquisition time. (c) RDI as a function of total acquisition time.

512 pixels, corresponding to 25% (resp., 12.5%) sampling.
This data is then linearly interpolated along each column to
produce a 512 × 512 pixel image. As before, these scans were
performed at 1.0, 2.5, 5.0, and 8.0 Hz. A subset of the resulting
images are shown in Fig. 11.

Both visually from Fig. 11 and the SSIM and PSNR metrics
shown in Figs. 10a and 10b, the 64 line scan performs the
worst of all sub-sampling methods and is slower than 12.5%
CS for slow scan rates. However, the 128 line scans appear to
have as good or better image quality than either CS scans.

Fig. 12 compares the speed improvement of the different
sub-sampling schemes over a full raster scan with 512 lines
as a function of scan rate. The 12.5% CS scan at 1 Hz
shows the most improvement, though the 64 line raster scan
is close behind. Due to the constant overhead imposed by the
engage/disengage and XY -move states in the CS scans, the
relative gain of the CS approach diminishes at faster scan rates
and eventually the 64- and 128-line scans are faster. In general,
the artifacts of the CS reconstructions are different than the
interpolated raster scans. CS appears to preserve the edges of
the holes better than subline sampling, while subline sampling
has less noise in the flat areas of the specimen.

VII. CONCLUSIONS

We have introduced a new reconstruction method designed
to reduce µ-path sampling artifacts. We then addressed several
practical implementation issues. Chief among these is the need
to more aggressively mitigate coupling between the horizontal
plane and the Z-axis than is required for raster scanning. Here,
we applied a feedforward control scheme which attenuates the
problematic modes by approximately 40 dB.

We then experimentally demonstrated µ-path sub-sampling
and compared the resulting images to both full raster scans
and coarse raster scans paired with reconstruction. The main
conclusion of this comparison is that with µ-paths, we can
acquire images faster yet with less specimen damage than is
possible while raster scanning a full image and that for slow
scan rates, µ-path scanning achieves better images in less time
than subline sampling. On the other hand, for faster scan rates
(and especially with higher sampling densities), reconstructing

a coarse raster scan makes more sense. This is notable, since
a coarse raster scan with reconstruction is considerably easier
to implement, both on the hardware side as well as the post-
processing side. It remains to be seen if this conclusion holds
for a wide range of instruments and specimens.
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